Standalone demo for testing the recommended AMD CPU/iGPU tracking stack:
Tested on 640x480 RTSP stream @ 10 FPS:
| Metric | Value |
|---|---|
| YOLO11n detection | ~10-12ms (PyTorch) |
| Full pipeline | 74+ FPS capability |
| Motion gate savings | 45-86% fewer detections |
| Track events | Enter/leave detection working |
Key findings:
# Install dependencies
pip install -r requirements.txt
# Test with webcam (with display + stats overlay)
python tracker_demo.py --source 0 --display --stats --trace
# Test with RTSP stream (15 second benchmark)
python tracker_demo.py \
--source "rtsp://user:pass@ip:554/stream" \
--no-openvino --duration 15 --stats
# Process video file and save output
python tracker_demo.py \
--source input.mp4 \
--output result.mp4 \
--stats
| Option | Description | Default |
|---|---|---|
--source, -s |
Video source (file, RTSP URL, webcam index) | required |
--display, -d |
Show live window | off |
--output, -o |
Save output video | none |
--model, -m |
YOLO model path | yolo11n.pt |
--no-openvino |
Disable OpenVINO (use PyTorch) | off |
--imgsz |
Detection input size | 640 |
--conf |
Confidence threshold | 0.5 |
--motion-threshold |
Pixels to trigger detection | 1000 |
--periodic-interval |
Force detection every N frames | 30 |
--track-buffer |
Frames before deleting lost track | 90 |
--trace |
Show movement traces | off |
--stats |
Show FPS/detection stats overlay | off |
--duration |
Limit benchmark to N seconds | 0 (unlimited) |
--max-frames |
Limit benchmark to N frames | 0 (unlimited) |
--display)q - Quits - Save screenshot--conf to 0.6-0.7--motion-threshold to 2000-3000--track-buffer to 120-150 (4-5 sec at 30 FPS)--periodic-interval to 15-20--imgsz 480 for faster detection--motion-threshold to reduce detection frequencyBased on benchmark results, for stream-ware integration: